Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contact us Login 
  • Users Online:1460
  • Home
  • Print this page
  • Email this page


 
 Table of Contents  
SPECIAL ARTICLE
Year : 2013  |  Volume : 1  |  Issue : 2  |  Page : 178-182

Nanodentistry: A realistic future!


Department of Conservative Dentistry and Endodontics, Yenepoya Dental College, Mangalore, Karnataka, India

Date of Web Publication13-Dec-2013

Correspondence Address:
Aravind R Kudva
Senior Lecturer, Department of Conservative Dentistry and Endodontics, Yenepoya Dental College, Deralakatte, Mangalore-575 018
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2321-4848.123046

Rights and Permissions
  Abstract 

The strength of small is huge, that is what one ought to say about the revolution called nanotechnology. And why not! Nanotechnology, a science which deals with atoms a few nano meters large, has the potential to make scientific strides across industries. The speed at which advances are being made in science has catapulted nanotechnology from its theoretical foundations straight into the real world. Dentistry also is facing a major revolution in the wake of this technology having already been targeted with novels 'nano-materials.' Molecular technology is destined to become the core technology underlying all 21 st century medicine and dentistry.

Keywords: Molecular technology, nano materials, nanometer, nanotechnology


How to cite this article:
Bhat SR, Kudva AR, Shetty HK, Shenoy A. Nanodentistry: A realistic future!. Arch Med Health Sci 2013;1:178-82

How to cite this URL:
Bhat SR, Kudva AR, Shetty HK, Shenoy A. Nanodentistry: A realistic future!. Arch Med Health Sci [serial online] 2013 [cited 2019 Jun 20];1:178-82. Available from: http://www.amhsjournal.org/text.asp?2013/1/2/178/123046


  Introduction Top


Emerging technologies and new scale nanoscale information have the potential to transform dental practice by advancing all aspects of dental diagnostics, therapeutics, and cosmetic dentistry into a new paradigm of state-of-the-art patient care beyond traditional oral care methods and procedures. One of the key changes is the application of new research tools that have changed the size scale of dental research. Nanoscale perspective leads to better understanding of dental structures and surfaces. This article aims to provide a glimpse of nanodental applications and proposed applications in the future.


  History Top
[1]

Richard Feynman, [Figure 1] a Nobel physicist, on December 29 th 1959 delivered a talk entitled 'There Is Plenty of Room at the Bottom.' It was he who said 'it's a development, which I think cannot be avoided.' Fifty years from then, remarkable progress has been made towards realizing Feynman's dream of nanotechnology.
Figure 1: Richard Feynman

Click here to view



  Fundamental Concepts Top


Nano comes from the Greek word for "Dwarf." Atoms are the building blocks for all matter in our universe. Everything around including usis made of atoms. Nature has perfected the science of manufacturing matter molecularly. For instance, our bodies are assembled in a specific manner from millions of living cells. Cells are nature's nanomachines.


  How Small Is the Nanoscale: Top


One nanometer (nm) is one billionth, or 10 -9 of a meter.One human hair (cross section) is about 100,000 nanometers, larger than nanoscaleis the microscale, and smaller than that is the atomic scale [Figure 2].
Figure 2: The nano scale

Click here to view



  Applications of Nanodentistry Nano Anesthesia Top
[1],[2]

To induce oral anesthesia in the era of nanodentistry, professionals will install a colloidal suspension containing millions of active analgesic micrometer-sized dental nanorobots particle on the patient's gingiva. Nanorobots can complete the journey into the pulp in 100 seconds. Once installed in the pulp and having established control over nerve impulse traffic, the analgesic dental nanorobots may be commanded by the dentist to shut down all sensitivity in any tooth that requires treatment. This will offer greater patient comfort, reduced anxiety, no-needle, fast and completely reversible action, and avoidance of most of side-effects and complications.


  Dentin Hypersensitivity Top
[1],[3],[4]

Dentin hypersensitivity is pathological phenomenon caused by pressure transmitted hydro dynamically to the pulp. Dental nanorobots can selectively and precisely occlude the specific tubules within a minute, offering patients a quick and permanent cure. Gold nanoparticles [Figure 3], the world's smallest gold fillings, so to speak are used by researchers to fill the affected dentinal tubules.
Figure 3: Gold nano particles used in dentin hypersensitivity

Click here to view



  Orthodontic Treatment Top
[5]

Sliding a tooth along an archwire involves a frictional type of force that resists this movement. Use of excessive orthodontic force might cause loss of anchorage and root resorption. In a study published by Katz, a reduction infriction has been reported by coating the orthodontic wirewith inorganic fullerene-like tungsten disulfidenanoparticles (IF-WS 2 ), which are known for their excellent drylubrication properties. In future, orthodontic nanorobots could directly manipulate the periodontal tissues, allowing rapid and painless tooth straightening, rotating, and vertical repositioning within minutes to hours.


  Role of Nanotechnology in Dental Biofilm Top


Nanotechnology has been used to study the dynamics of demineralization/remineralization process in dental cariesby using tools, such as atomic force microscopy (AFM), which detects bacteria-induced demineralization at anultrasensitive level. Using AFM, the correlation between genetically modified Streptococcus mutans and nanoscalemorphology has been assessed. [6]

The nanoscale cellular ultra structure is a direct representation of genetic modifications as most initiate changes in surface protein and enzyme expression, where host- cell nutrient pathways and immune response protection likely occur. The surface proteins and enzymes, common to S. mutanss trains, are akey contributor to the cariogenicity of these microbes.

Chalmers, et al. had applied quantum dots (QD) (semi-conductor nano crystals)-based primary immune fluorescence for in vitro and in vivo labeling of bacterial cells and compared this approach with the fluorophore-based primary immunofluorescence. [7]

A new silver-basedchemistry based on nanotechnology has proven to be effective against biofilms. Silver works in a number of ways to disrupt critical functions in a microorganism. For example, it has a high affinity for negatively charged side groups on biological molecules, such as sulfydryl, carboxyl, phosphate, and other charged groups distributed throughout microbial cells. Silver attacks multiple sites within the cell to inactivate critical physiological functions, such as cell wall synthesis, membrane transport, nucleic acid (RNA and DNA) synthesis and translation, protein folding and function and electron transport. [8]


  Nanotechnology and Its Role in the Management of Periodontal Diseases Top


Using natural processes as a guide, substantial advances have been made at the interface of nanomaterials and biology, including the fabrication of nanofiber materials for three-dimensional cell culture and tissue engineering. [9] Nanoparticles are being developed for a host of biomedical and biotechnological applications including drug delivery, enzyme immobilization, and DNA transfection. [10]

Recently, Pinon-Segundo, et al. produced and characterized triclosan-loaded nanoparticles by the emulsification-diffusion process, in an attempt to obtain a novel delivery system adequatefor the treatment of periodontal disease. [11] Drugscan be incorporated into nanospheres composed of abiodegradable polymer, and this allows for timed release ofthe drug as the nanospheres degrade. This also allows forsite-specific drug delivery. A good example of how thistechnology might be developed is the recent development of arestin, in which tetracycline is incorporated into microspheres for drug delivery by local means to aperiodontal pocket. [12]


  Impression Materials Top
[1]

Impression materials are available with nanotechnology application. Nanofillers are integrated in the vinylpolysiloxanes, producing a unique addition siloxane impression material. The material has better flow, improved hydrophilic properties, hence fewer voids at margin and better model pouring and enhanced detail precision when compared to the other conventional impression materials used.


  Nanocomposites Top
[1]

Nano Products Corporation has successfully manufactured non-agglomerated discrete nanoparticles that are homogeneously distributed in resins or coatings to produce Nano Composites. The nanofiller used includes an aluminosilicate powder having a mean particle size of about 80 nm and a refractive index of 1.508. Superior hardness, superior flexural strength, superior modulus of elasticity, superior translucency and esthetic appeal, excellent color density, high polish and polish retention, about 50% reduction in filling shrinkage, and excellent handling properties, all these characteristics make the nanocomposites superior to the conventional composites and blend with natural tooth structure much better.


  Nanorobots Top
[2]

Frietas described nanorobots [Figure 4] and how they can steer into the tissues via cytopenetration and navigational precision. A dentist could have the patient rinse with a solution containing millions of microscopic machines called "nano assemblers." They receive signals from the computer controlled by the dentist, swarm the cavities, eliminate the decay and bacteria, and repair the area by building a new tooth structure. The new system, still in its nascent stage, can eliminate drilling and filling of teeth.
Figure 4: Nano robots

Click here to view


A sub-occlusalnanorobotic dentifrice delivered by mouth wash or tooth paste could control all supra-gingival and sub-gingival plaque surface at least once a day and performing continuous calculus debridement. They can identify and destroy pathogenic bacteria residing in the plaque providing continuous barrier to halitosis


  Nano Tissue Engineering Top
[3]

The gold standard to replace an individual's lost or damaged tissue is the same natural healthy tissue- "BIOLOGIC SOLUTIONS TO BIOLOGIC PROBLEMS."

This standard has led to the concept of tissue engineering, which includes three components which are scaffolds, cells, and bio active molecules [Figure 5].
Figure 5: Nano tissue engineering

Click here to view


[TAG:2]Nano Scaffolds . . . How Are They Different??[/TAG:2]

An ideal tissue scaffold should have hierarchical porous structures comparable to that of human bone to facilitate transport of nutrients and tissue in growth. Also, surface features on the nanometer scale improve the conformation of typical adhesive proteins and accelerate cell attachment and proliferation. Significant benefit of this technique is that the scaffold has no distinct interface between substrate and nano-structured layer. This favors the formation of a smooth junction between the bone tissue and scaffold [Figure 6].
Figure 6: Nano Scaffold

Click here to view



  Nano Bone Grafts Top
[1]

Autogenous- and allogenic-bone grafts have been used for a long time in bone therapies, synthetic biomaterials have been developed and clinically used as bone grafts, but most of them differ substantially from natural bone either compositionally or structurally. Owing to the composition and structural similarity to natural bone, nanocomposites, particularly hydroxyapatite/collagen system, are promising bone grafts. Their nanoscale functional characteristics facilitate bone cell growth and subsequent tissue formation. Ostim® HA, Vitoss® HA+TCP and Nanoss TM HA are commercially available [Figure 7].
Figure 7: Nano grafts

Click here to view



  Drug Delivery Systems Top
[1]

In therapeutic process, nanotechnology has two specific roles:

  1. Entry of drug into the cell by endocytosis only using nanoparticles as carriers.
  2. Targeted delivery of drug to the desired tissue or cell so as to minimizeside-effects.


Biodegradable nanoparticles formulated from poly (-lactide-co-glycolide) (PLGA) have been extensively investigated for sustained and targeted/localized delivery of different agents [Figure 8].
Figure 8: Nano drug delivery system

Click here to view



  Dental Implants Top
[4]

A traditional material for dental implants is titanium, because it's compatible with the body. The speed, at which osseointegration proceeds, depends heavily on the surface characteristics of the implant. To speed things up, plasma spraying, first with titanium and then with hydroxyapatite is done, but it delaminates soon leading to implant failure.

The NanoTite implant [Figure 9] incorporates the complex architecture at the nano-scale allowing a bone-bonding surface. NanoTite implants result in significantly enhanced integration. A thin layer of calcium phosphate crystals between 20 and 100 nm in length and 10 to 20 nm in width was added over the textured surface. This speeds up the process anywhere between three and ten times.
Figure 9: Nano implants

Click here to view



  Conclusion Top


This science may now seem to be a fiction. But, looking at the progress made in this field since Feynman saw the first vision of nanoscience in 1959, we can definitely expect a 'NANO TSUNAMI' to strike us in near future. Nanodentistry will give a new visionary to comprehensive oral health care, as now trends of oral health have been changing to more preventive intervention than a curative and restorative procedure. Nanodentistry has strong potential to transfigure dentists to diagnose and treat disease in future.

Though in its infancy, nanotechnology is bound to change dentistry, health care, and human life more profoundly than other developments.

 
  References Top

1.Whitesides GM and Love JC.Art of building small. Sci Am 2001;285:38-47.   Back to cited text no. 1
    
2.Freitas RA Jr,Nano dentistry. J Am DentAssoc 2000;131:1559-65.  Back to cited text no. 2
    
3.JoyB, Why the future doesn't need us. Available from:http://www.wired.com/wired/archive/8.04/joy.html [Last accessed on 2012 Jan 15].  Back to cited text no. 3
    
4.Jhaver HM, Balaji. The future of dentistry. Nanotechnology 2005;5:15-7.  Back to cited text no. 4
    
5.Redlich M, Katz A, Rapoport L, Wagner HD, Feldman Y, Tenne R. Improve orthodontic stainless steel wires coated with inorganic fullerene-like nanoparticles impregnated in electroless nickel-phosphorous film. Dent Mater 2008;24:1640-6.  Back to cited text no. 5
[PUBMED]    
6.Cross SE, Kreth J, Zhu L, Qi F, Pelling AE, Shi W, et al. Atomic force microscopy study of the structure-function relationships of the biofilm-forming bacterium Streptococcus mutans. Nanotechnology 2006;17:S1-7.  Back to cited text no. 6
[PUBMED]    
7.Chalmers NI, Palmer RJ, Thumm LD, Sullivan R, Wenyuan S, Kolenbrander PE. Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms. Appl Environ Microbiol 2007;73:630-6.  Back to cited text no. 7
    
8.Gibbins B, Warner L. The role of antimicrobial silver nanotechnology. MDDI 2005.  Back to cited text no. 8
    
9.Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003;21:1171-8.  Back to cited text no. 9
[PUBMED]    
10.Kohli P, Martin C. Smart nanotubes for biomedical and biotechnological applications. Drug News Perspect 2003;16:566-73.  Back to cited text no. 10
    
11.Pinon-Segundo E, Ganem-Quintanar A, Alonso-Perez V, Quintanar-Guerrero D. Preparation and characterization of triclosannano particles for periodontal treatment. Int J Pharm 2005;294:217-32.  Back to cited text no. 11
    
12.Paquette DW, Hanlon A, Lessem J, Williams RC. Clinical relevance of adjunctive minocycline microspheres in patients with chronic periodontitis: Secondary analysis of a phase 3 trial. J Periodontol 2004;75:531-6.  Back to cited text no. 12
[PUBMED]    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7], [Figure 8], [Figure 9]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
History
Fundamental Concepts
How Small Is the...
Applications of ...
Dentin Hypersens...
Orthodontic Trea...
Role of Nanotech...
Nanotechnology a...
Impression Materials
Nanocomposites
Nanorobots
Nano Tissue Engi...
Nano Scaffolds ....
Nano Bone Grafts
Drug Delivery Sy...
Dental Implants
Conclusion
References
Article Figures

 Article Access Statistics
    Viewed3351    
    Printed65    
    Emailed0    
    PDF Downloaded425    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]