Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contact us Login 
  • Users Online:643
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2017  |  Volume : 5  |  Issue : 2  |  Page : 200-203

Effect of vitamin E supplementation on superoxide and malondialdehyde generation in acute celphos poisoning


1 Department of Biochemistry, Government Medical College, Agartala, Tripura, India
2 Department of Biochemistry, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana, India

Correspondence Address:
Simmi Kharb
H.No. 1396, Sector-1, Rohtak, Haryana
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/amhs.amhs_39_17

Rights and Permissions

Introduction: Aluminum phosphide is one of the most commonly used grain fumigants and aluminum phosphide poisoning (ALP) has been reported as the most common cause of acute poisoning in India. Aluminum toxicity has been reported to increase the rate of lipid peroxidation and free radical formation. Materials and Methods: The present study was designed to investigate the role of vitamin E supplementation on free radical generation and lipid peroxidation in acute aluminium phosphide poisoning in rats. Thirty disease free albino rats were taken to study the effect of acute aluminium phosphide poisoning (ALP poisoning) were further divided into 3 subgroups of ten rats each: A, B and C. Group A: given vehicle (Ginni Oil) only. Group B: given 5 ml 'celphos mixture' (or 0.3mg/g body wt.). Group C: rats with acute Celphos poisoning along with vitamin E (1.5 mg vitamin E/g body weight of rat. The MDA levels and superoxide levels (Nitroblue tetrazolium (NBT) reduction) were estimated. Results: MDA levels were significantly higher in the group B as compared to Group A. In group C, administration of vitamin E resulted in decreased MDA level compared to group B. MDA levels in group C still remained significantly higher as compared to group A. NBT reduction was significantly increased in group B as compared to group A. Administration of vitamin E to rats of group C resulted in significant decrease of NBT reduction. Conclusion: Findings of the present study showed that vitamin E via its antioxidant action and anti-inflammatory effects has protective effect on phosphine-induced toxicity in rats.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1055    
    Printed27    
    Emailed0    
    PDF Downloaded112    
    Comments [Add]    

Recommend this journal